📝笔记:SLAM常见问题(一):SearchByBoW
ORB-SLAM中使用了多种特征匹配的奇技淫巧,其中之一就是利用词袋信息进行引导匹配SearchByBoW
:利用了BOW
里的正向引导进行两帧之间的匹配,核心点在于位于同一个节点处的特征才有可能属于同一匹配,相较于暴力匹配匹配速度更快。
ORB-SLAM中使用了多种特征匹配的奇技淫巧,其中之一就是利用词袋信息进行引导匹配SearchByBoW
:利用了BOW
里的正向引导进行两帧之间的匹配,核心点在于位于同一个节点处的特征才有可能属于同一匹配,相较于暴力匹配匹配速度更快。
由浙江大学CAD&CG国家重点实验室主办、浙江大学-商汤三维视觉联合实验室协办的“SLAM技术及应用”暑期学校于7月20日如期拉开序幕。 今天(2019/07/20)看到直播的时候已经是下午4点半了,只听到刘浩敏讲到末尾的一段,幸好主办方提供了讲座课件,Download下来慢慢看。
时隔三年,笔者重新研读了这篇论文,仍感觉极富参考价值。笔者更新了这篇于三年前写的文章,主要集中在特征点解码端65通道的解释以及损失函数的理解。
2022.05
2019.04
The post contains papers-with-code about SLAM, Pose/Object tracking, Depth/Disparity/Flow Estimation, 3D-graphic, Machine Learning, Deep Learning etc.
最近一段时间在推
首先,解释下SLAM的概念,借鉴高博《视觉 SLAM 十四讲》中的一句话:SLAM 是 Simultaneous Localization and Mapping 的缩写,中文译作“同时定位与地图构建”。它是指搭载特定传感器的主体,在没有环境先验信息的情况下,于运动过程中建立环境的模型,同时估计自己的运动。如果这里的传感器主要为相机,那就称为“视觉 SLAM”。